Multi-directional continuous association with input-driven neural dynamics

نویسندگان

  • Christian Emmerich
  • René Felix Reinhart
  • Jochen J. Steil
چکیده

We present an input-driven dynamical system approach to continuous association. Previous formulations of associative reservoir computing networks and associative extreme learning machines are unified and generalized to multiple modalities. Association in these networks proceeds by externally driving parts of the network. Through continuous variation of driving inputs, a continuous association of output patterns is achieved. Robust association in this scheme requires to cope with potential error amplification of feedback dynamics and to handle differently sized input and output modalities such that the outcome of association is controlled by the driving inputs. We propose a dendritic neuron model in combination with a regularization technique to address both issues. The presented method allows for tuning contributions from each modality to the hidden representation by prescribed factors while the regularization of network weights mitigates the problem of error amplification. The scalability of the approach to high-dimensional applications is demonstrated in image and audio processing scenarios.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Leader-Following and Leaderless Consensus of a Class of Nonlinear Systems Using Neural Networks

This paper deals with leader-following and leaderless consensus problems of high-order multi-input/multi-output (MIMO) multi-agent systems with unknown nonlinear dynamics in the presence of uncertain external disturbances. The agents may have different dynamics and communicate together under a directed graph. A distributed adaptive method is designed for both cases. The structures of the contro...

متن کامل

Dynamic Analysis of Multi-Directional Functionally Graded Panels and Comparative Modeling by ANN

In this paper dynamic analysis of multi-directional functionally graded panel is studied using a semi-analytical numerical method entitled the state-space based differential method (SSDQM) and comparative behavior modeling by artificial neural network (ANN) for different parameters. A semi-analytical approach which makes use the three-dimensional elastic theory and assuming the material propert...

متن کامل

Limit of Dislocation Density and Ultra-Grain-Refining on Severe Deformation in Iron

It is well-known that severe deformation to metals causes a direct grain refinement of the matrix without special heat-treatments due to the mechanism of dynamic continuous recrystallization (DCR). However, the microstructural revolution during severe deformation is seemed to be different depending on the deformation mode, namely the direction of deformation. In general, multi-directional defor...

متن کامل

Intelligent identification of vehicle’s dynamics based on local model network

This paper proposes an intelligent approach for dynamic identification of the vehicles. The proposed approach is based on the data-driven identification and uses a high-performance local model network (LMN) for estimation of the vehicle’s longitudinal velocity, lateral acceleration and yaw rate. The proposed LMN requires no pre-defined standard vehicle model and uses measurement data to identif...

متن کامل

Adaptive Neural Network Method for Consensus Tracking of High-Order Mimo Nonlinear Multi-Agent Systems

This paper is concerned with the consensus tracking problem of high order MIMO nonlinear multi-agent systems. The agents must follow a leader node in presence of unknown dynamics and uncertain external disturbances. The communication network topology of agents is assumed to be a fixed undirected graph. A distributed adaptive control method is proposed to solve the consensus problem utilizing re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 112  شماره 

صفحات  -

تاریخ انتشار 2013